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Genetic association studies

General purpose
Detect genomic regions which are associated with some trait
Traits might be e.g. quantitative or dichotomous

Genetic markers
Any observable characteristic with known location on the chromosome
which varies between individuals

• Traditional: Genes that encode certain phenotypes

• Today: DNA sequence information
e.g. SNPs, Copy number variation, etc.
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SNPs as genetic markers

Single Nucleotide
Polymorphism

SNP: Point mutation

Humans: Some 20 million SNPs
known, �gure increasing rapidly

SNP Arrays
A�ymetrix 6: ca. 1 million SNPs
Latest Illumina: ca. 5 million SNPs

Wikipedia
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Technology

SNP arrays

• Approximately 10 years around

• Similar to RNA Micro-Arrays

• Both variants of SNP on array (say A and a)
⇒ Di�erent intensities for genotypes AA, Aa, aa

First step
Image segmentation similar to RNA Micro-Arrays
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Technology
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Downstream Analysis

Y ← X1, . . . ,Xp

• Y . . . quantitative (e.g. height) or categorical (e.g. disease status)

• Xj ∈ {−1, 0, 1} for di�erent genotypes
• n observations

Typical: n > 103, p > 105

Question:
Which Xj are associated with Y ?

State of the art analysis: Single marker tests

• Test statistic for each SNP (ANOVA, χ2, etc.)

• Multiple testing correction
(Bonferroni, FDR control, permutation tests, . . . )
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Alternative approach: Model selection

Model
Index vector M = [j1, . . . , jkM ]

Quantitative Trait: Linear regression

M : Y = XMβM + ε, XM = [Xj1 , . . . ,XjkM
]

Columns of design matrix Xj :

• (−1, 0, 1) additive e�ects

• (1, 0, 1) dominance e�ects

Case control studies: Logistic regression

Two fundamental questions

1. How to evaluate what is a good model?

2. How to �nd a good model?
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Model selection criteria

Classical
Maximum likelihood LM with penalties based on model size

−2 log LM + Penalty · kM

Examples: AIC, BIC, RIC, Mallows C , etc.

AIC . . . Penalty = 2, BIC . . . Penalty = log n

More recent
LASSO: L1− Penalty
Elastic Net: L1 and L2− Penalty
etc.
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Model selection for p > n

Classical theory for AIC and BIC
Derived for constant p, while n→∞

Results for p > n no longer correct
e.g. BIC no longer consistent

Problem
In case of sparsity and p > n BIC chooses too large models
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Schwarz BIC in case of sparsity

Source of problem
BIC derived in Bayesian context

P(M|Y ) =
P(Y |M)π(M)

P(Y )

BIC ignores model prior π(M), i.e. equivalent with uniform prior for all
models ⇒ informative prior for model size

e.g. p models of size 1,
(

p
p/2

)
models of size p/2

If one expects only few causal SNPs
⇒ BIC selects too large models

Solution
Use model prior π(M) which takes into account p
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First modi�cation of BIC

Original BIC [Schwarz (1978)]

BIC =−2 log LM + kM log n

mBIC [Bogdan et al. (2004)]

Model prior π(M) = ωkM · (1− ω)p−kM yields

mBIC =−2 log LM + kM [log(np2) + d ]

Properties

• ω . . . Prior probability of causal SNPs ⇒ de�nes d
Recommendation if no prior information: d = −2 log 4

• Orthogonal design ⇒ mBIC controls FWER (closely related to
Bonferroni correction)
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FDR-controlling modi�cations of BIC

mBIC =−2 log LM + kM [log(np2) + d ]

mBIC2 [Frommlet et al. (2011)]
Model selection criterion which under orthogonality controls FDR

mBIC2=−2 log LM + kM [log(np2) + d ]− 2 log kM !

Properties

• Penalisation based on ideas of [Abramovich et al. (2006)]

• mBIC2 has certain optimality properties (as we will see)
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Ideas underlying mBIC2

Penalizing scheme by [Abramovich et al. (2006)]

RSSM

σ2
+

kM∑
i=1

q2N(αi/2p) (1)

with qN(α) the (1− α) - quantile of standard normal

• Benjamini Hochberg (BH) corresponds to largest local minimum of
(1)

• Corresponding step down procedure corresponds to smallest local
minimum of (1)

• Approximation of penalty term using α = n−1/2 yields mBIC2
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Optimality properties of mBIC2

Asymptotic Bayes optimality under sparsity (ABOS)
Topic of Bogdan et al. (2011), Frommlet et al. (2013) for multiple testing

Essential idea for regression

• Two groups model for regressors:

P(βi 6= 0) = η, with η small

while n and p are large

• Compare misclassi�cation rate of procedure with optimal Bayes rule
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Simulation for unknown σ, η ∝ p−1

Orthogonal design, p = n

Misclassi�cation rate as a function of p, η(128) = 0.125
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Simulation for unknown σ, η ∝ p−1/4

Orthogonal design, p = n
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Simulation for unknown σ, η ∝ p−1/8

Orthogonal design, p = n

Misclassi�cation rate as a function of p, η(128) = 0.125
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Closely related criterion: extended BIC

Chen and Chen (2008): Prior
(

p

kM

)κ−1

EBIC =−2 log LM + kM log n + 2 log

(
p

kM

)1−κ

with 0 ≤ κ ≤ 1.

• κ = 1 ⇒ original BIC

• κ = 0 ⇒ asymptotically equivalent with mBIC2

Chen and Chen (2008): Consistency results for EBIC

• Under certain assumptions on design matrix for non-orthogonal case

• Similar consistency results hold for mBIC2
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Comparison of criteria for known σ
Orthogonal design, p = n = 64
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Simulation study for GWAS

Frommlet et al. (2011 b)
Real SNP Data: POPRES from dbGaP

• 309790 SNPs for 649 individuals (Caucasians)

• k = 40 causal SNPs chosen such that
MAF between 0.3 and 0.5
Correlation between -0.12 and 0.1

• Simulation of quantitative trait under additive model M

Yi =
40∑
j=1

βjXij + εi , εi ∼ N (0, 1)

βj equally spaced between 0.27 and 0.66

• 1000 simulation runs
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Heritability

Total heritability:

H2 =
Var (XMβM)

1 + Var (XMβM)

Individual heritability:

h2j =
β2j Var (Xj)

1 + Var (XMβM)
,

Values in our simulation study

Total heritability: H2 ≈ 0.81.
Individual heritability: h2j between 0.006 and 0.037
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De�nition of false positives and true positives

Problem
Causal SNPs are known

Frequently strongly correlated SNPs are selected:
Are these to be classi�ed as true or false positives?

Common solution
De�ne threshold value C (E.g. C = 0.7 or C = 0.9).
If correlation between detected SNP and causal SNP larger than C

⇒ Classi�cation as true positive
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Comparison between model selection and single marker tests

Four methods:

Per marker Model selection
Control of FWER Bonferroni mBIC
Control of FDR Benjamini Hochberg mBIC2
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False Discovery Rate

FDR and Power
Cuto�s de�ne TP and FP for correlated marker
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Explanation for low power

Correct model: Yi = β0 +
∑

l∈M∗ βlXil + εi

Test statistic: Fj =
(n−2)MSS(Xj )

RSS(Xj )

Non-centrality parameters:

νM,j =

(∑k

l=1 βlCov (Xj ,Xl)
)2

σ2Var (Xj)

νR,j =
∑

l∈M∗\{j}

∑
r∈M∗\{j}

βlβr
σ2

(
Cov (Xl ,Xr )−

Cov (Xl ,Xj)Cov (Xr ,Xj)

Var (Xj)

)
.

νR,j contains contribution of all other causal SNPs
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Power for mBIC2 and BH
Bigger surprise:
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Explanation for problems of BH
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Practical conclusions for GWAS analysis

In case of complex traits:

• Single marker tests (SMT) have low power
⇒ One aspect in the discussion about �missing heritability�

• SMT have di�culties to rank the importance of causal SNPs
⇒ Problem with replicability in GWAS

• For the same reason SMT systematically detect some false positives
which are not correlated with any of the causal SNPs

Model selection approach helps to some extent
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Logistic Regression for Case Control

Usual model
Yi is Bernoulli, P(Yi = 1) = pi , with

log(pi/(1− pi )) = β0 +
∑
j∈M

βjXij

We discuss three selected methods

• HLASSO: Hoggart, Balding (2008)

• GWASelect: He and Lin (2011)

• MOSGWA: Our own approach
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HLASSO

Hoggart, . . . , Balding: Bioinformatics (2008)
More Bayesian approach using shrinkage priors on coe�cients of logistic
regression models

• Gaussian prior (implemented, but no selection)

• Double exponential prior (DE) ⇒ equivalent to Lasso

• Normal exponential gamma (NEG) ⇒ Hyper Lasso

Densities of DE and NEG

DE (β|ξ) =

∞∫
σ2=0

N(β|0, σ2)Ga(σ2|1, ξ2/2)dσ2 =
ξ

2
exp (−ξ|β|)

NEG (β|λ, γ) =

∞∫
Ψ=0

∞∫
σ2=0

N(β|0, σ2)Ga(σ2|1,Ψ)Ga(Ψ|λ, γ2)dσ2dΨ
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NEG priors

Logarithm of prior densities �xed to
have the same density at the origin
(Taken from Hoggart et al., 2008)

NEG (β|λ, γ) ∝ exp

(
β2

4γ2

)
D−2λ−1

(
|β|
γ

)
where D is parabolic cylinder
function
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HLASSO

Optimisation algorithm
Not fully Bayesian, but searching only for posterior mode

log p(β|X ,Y ) = `(β)− q(β) + const ,

with
`(β) := log L(β|X ,Y ), q(β) := − logNEG (β|λ, γ)

HLASSO has rather e�cient implementation to �nd optimum of log p
CLG algorithm (cyclic coordinate descent) with clever bounds to speed
up
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HLASSO

CLG - Basic idea
Run iteratively and repeatedly through all coe�cients with
component-wise Newton

βnewj = βj −
∂
∂βj

`(β)− q′(βj)

∂2

∂β2j
`(β)− q′′(βj)

If βnewj · βj < 0 then set βnewj = 0

Speci�cally if βj = 0

Consider both limits βj = 0+ and βj = 0−

No change of sign is equivalent to∣∣∣∣ ∂∂βj `(β)

∣∣∣∣
βj=0

> q′(βj = 0+)
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HLASSO

Parameter tuning to control FWER
Asymptotic normality under null gives β̂j ∼ N

(
0, n0+n1

n0n1

)
From last relationsship of previous slide one then gets relationship to
determine type I error

q′(βj = 0+) =

√
n0n1

n0 + n1
Φ−1(1− α/2)

• Double Exponential: q′(βj = 0+) = ξ

• NEG: (Careful: Typo in paper)

q′(βj = 0+) = const · 2λ+ 1

γ

Now actually two parameters to be �tted, Hoggart et al. use
λ = 0.05 (after trying other parameters) and the γ follows
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HLASSO

Parameter tuning to control FWER
HLASSO o�ers choice of parameter α which corresponds to uncorrected
signi�cance level
⇒ Choosing for example α = 0.05/p works

Di�erence between LASSO and HLASSO

• Lighter tails of DE distribution ⇒ more shrinkage
⇒ Correlated SNPs tend to enter model to explain full e�ect of

causal SNP

• NEG prior has heavier tails ⇒ less shrinkage
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GWASelect

He and Lin: Bioinformatics (2011)

Rough outline of algorithm

1. Sure Independence Screening (SIS)

2. Lasso for logistic regression

3. 'Pruning' of correlated SNPs

These steps are iterated based on conditional score tests ⇒ ISIS

Stability selection
Meinshausen, Bühlmann (2010)
Perform the whole procedure on 50 subsamples

(randomly select 50% cases and 50 % controls)
⇒ compute selection probabilities
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GWASelect

First iteration
Preselection based on marginal tests (Cochran Armitage trend test),
SIS theory: Consider 0.9n/(4 log n) SNPs with largest test statistic

Lasso
Model selection using Lasso on selected set of SNPs
(cyclic coordinate decent for optimization)
For 'dynamic' GWASelect tuning parameter λ determined by 5-fold cross
validation

Pruning of Correlated SNPs
Remove SNPs from model which have pairwise correlation |R| < 0.8
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GWASelect

Second and third iteration
After pruning t SNPs left in model, say X1, . . . ,Xt

Interested to consider all in�uence of other SNPs conditional on SNPs
already in the model, speci�cally for all Xr , r > t

log(pi/(1− pi )) = β0 +
t∑

j=1

βjXij + γXr

we would like to know if γ = 0
LRT too timeconsuming, but Scoretest very fast alternative
⇒ SIS step based on Score test statistics

Keep 0.05n/(4 log n) best SNPs
Then again Lasso and pruning of correlated SNPs
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GWASelect

Software

• Stand alone program, di�erence between GWASelect and
d-GWASelect

• In d-GWASelect only parameter to choose is threshold from stability
selection
Recommended values: between 0.1 and 0.2
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MOSGWA for Case Control

Based on criterion mBIC2

mBIC2=−2 log LM + kM [log(np2/4)]− 2 log km!

Speci�c issue with logistic regression
p > n ⇒ problem of complete separation occurs even for large n
⇒ we use Firth correction

L∗(β| Y ,X ) := L(β) · |I (β)|1/2

|I (β)|1/2 . . . Je�reys prior , I (β) = −E
(

∂2β
∂βr∂βs

log L(β)
)2

Neither HLASSO nor GWASelect have this problem, as they implicitly
penalize too large βj



Introduction Modi�cations of BIC GWAS Simulation QT Case Control studies Outlook

MOSGWA for Case Control

Based on criterion mBIC2

mBIC2=−2 log LM + kM [log(np2/4)]− 2 log km!

Speci�c issue with logistic regression
p > n ⇒ problem of complete separation occurs even for large n
⇒ we use Firth correction

L∗(β| Y ,X ) := L(β) · |I (β)|1/2

|I (β)|1/2 . . . Je�reys prior , I (β) = −E
(

∂2β
∂βr∂βs

log L(β)
)2

Neither HLASSO nor GWASelect have this problem, as they implicitly
penalize too large βj



Introduction Modi�cations of BIC GWAS Simulation QT Case Control studies Outlook

MOSGWA for Case Control

Based on criterion mBIC2

mBIC2=−2 log LM + kM [log(np2/4)]− 2 log km!

Speci�c issue with logistic regression
p > n ⇒ problem of complete separation occurs even for large n
⇒ we use Firth correction

L∗(β| Y ,X ) := L(β) · |I (β)|1/2

|I (β)|1/2 . . . Je�reys prior , I (β) = −E
(

∂2β
∂βr∂βs

log L(β)
)2

Neither HLASSO nor GWASelect have this problem, as they implicitly
penalize too large βj



Introduction Modi�cations of BIC GWAS Simulation QT Case Control studies Outlook

MOSGWA, Model Search

Major issue for practical application ⇒ 2p potential models

Strategies
Computation of ML much more time consuming than for linear regression
⇒ Even more important than for linear regression to keep models

small

• Preselection of markers using marginal tests (Compare SIS)

• Heuristic greedy search procedures
(as described in the next slide)

• Genetic Algorithms (as described later)
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Model Search strategy

Step 1

• Preselection and sorting based on marginal tests (CAT)

• Fast stepwise search (to be speci�ed)

Step 2

• Preselection and sorting based on Score tests conditional on model
obtained in Step 1
Idea: For logistic regression Score test much faster than LRT

• Fast stepwise search (to be speci�ed)

Described strategy good, but tends to get stuck in too small models

⇒ Start with search using milder criterion
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Model Search strategy

Fast stepwise search
Starting point: Regressors sorted by test statistic
Iterate the following three steps till no further improvement

• Directed forward search: Find the �rst regressor in sorted list
which decreases mBIC2 and add to model

• Exchange step: See if substituting any regressor in model with
candidate SNP foe exchange decreases mBIC2
Candidates: neighboring SNPs

or in �rst step SNPs preselected with CAT

• Backward step: Routine backward elimination

Fast enough to deal with full GWAS data sets
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Simulation study

Simulation study
Comparison of MOSGWA, GWASelect and HLasso
Again SNP data from POPRES (dbGaP), now more than 4000 individuals

First simulation under global null
For four di�erent sets of SNPs
Chr1, Chr1 + Chr2, Chr1 - Chr4, Chr1 - Chr6

Second simulation
24 causal SNPs (uncorrelated, MAF > 0.3)
Simulate 200 instances under logistic regression model

E�ect βj sizes between 0.2 and 0.26
Half of causal SNPs removed before search
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Simulation under global null

Average number of False Positives
HLASSO with parameters 0.1/p, 0.2/p, 0.3/p
GWASelect with parameters 0.1, 0.2, 0.3

MOSGWA and HLASSO
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Simulation under Model (k∗ = 24)

False positives and Power
Cuto�s de�ne TP and FP for correlated marker
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MOSGWA

Model Selection for Genome Wide Association

Package

• Written in C++ by Bodenstorfer, Dolejsi, Ruhaltinger

• Aim: Professional software for genetic researchers

• Currently

• SNP array data (PLINK format and HDF5)
• Linear and Logistic Regression
• Allows for inclusion of covariates

• First version on-line since this week!
https://sourceforge.net/projects/mosgwa/
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MOSGWA

Planned Extensions

• Better search strategies Speci�cally genetic algorithm for search

• Mixed models (relatively easy for QT)

• Sequencing data, including methods for rare SNPs

• Admixture mapping

• Logic regression for interactions, etc.
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Memetic algorithm

Basic idea of genetic algorithm

• Work with population of models

• mBIC2 as measure of �tness of a model

• Use evolutionary dynamic to increase �tness of population
Selection, recombination, mutation

Memetic algorithm
Also hybrid genetic algorithm
Incorporates local optimization to increase performance
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MA count = 0
Iteration count = 0

Initiate population of size u

including local improvement

Tournament selection

Recombination, Mutation
Local improvement

New string better
than worst string
of population?

Update population

New string among B

best of population?

MA count = 0
Iteration count + 1

MA count + 1
Iteration count + 1

MA count
= I?

Stop

yes
no

yes
no

no

yes

Abbildung: Flow chart of the Memetic Algorithm. Parameters to be tuned are
u, t, pr , pm, B and I
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Memetic algorithms

MA particularly designed for our application

• Frommlet et al. (2012): Simulations for QTL mapping:
⇒ GA �nds frequently better solution than stepwise search

• Implementation for GWAS �nished, not yet integrated in MOSGWA

Estimation of marker posteriors
MA gives many good solutions ⇒ model posteriors∑
M∈M

P(Y |M)·π(M) ≈
∑

M∈Pool

P(Y |M)·π(M) ≈
∑

M∈Pool

exp (−mBIC(M)/2) .

Then marker posteriors

P(jr |Y ) ≈

∑
M∈MPool

r

exp (−mBIC(M)/2)∑
M′∈MPool

exp (−mBIC(M ′)/2)
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Marker posteriors from MA

Example from real data analysis
Morphological di�erences in Drosophila Simulans (Zeng et al. (2000))

Search over markers
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